在遇到嚴(yán)重性能問題時,一般都有這么幾種可能:
1、索引沒有建好;
2、sql寫法過于復(fù)雜;
3、配置錯誤;
4、機(jī)器實(shí)在負(fù)荷不了;
1、索引沒有建好
如果看到mysql消耗的cpu很大,可以用mysql的client工具來檢查。
在linux下執(zhí)行
/usr/local/mysql/bin/mysql -hlocalhost -uroot -p
輸入密碼,如果沒有密碼,則不用-p參數(shù)就可以進(jìn)到客戶端界面中。
看看當(dāng)前的運(yùn)行情況
show full processlist
可以多運(yùn)行幾次
這個命令可以看到當(dāng)前正在執(zhí)行的sql語句,它會告知執(zhí)行的sql、數(shù)據(jù)庫名、執(zhí)行的狀態(tài)、來自的客戶端ip、所使用的帳號、運(yùn)行時間等信息
在我的cache后端,這里面大部分時間是看不到顯示任何sql語句的,我認(rèn)為這樣才算比較正常。如果看到有很多sql語句,那么這臺mysql就一定會有性能問題
如果出現(xiàn)了性能問題,則可以進(jìn)行分析:
1、是不是有sql語句卡住了?
這是出現(xiàn)比較多的情況,如果數(shù)據(jù)庫是采用myisam,那么有可能有一個寫入的線程會把數(shù)據(jù)表給鎖定了,如果這條語句不結(jié)束,則其它語句也無法運(yùn)行。
查看processlist里的time這一項(xiàng),看看有沒有執(zhí)行時間很長的語句,要留意這些語句。
2、大量相同的sql語句正在執(zhí)行
如果出現(xiàn)這種情況,則有可能是該sql語句執(zhí)行的效率低下,同樣要留意這些語句。
然后把你所懷疑的語句統(tǒng)統(tǒng)集合一下,用desc(explain)來檢查這些語句。
首先看看一個正常的desc輸出:
mysql> desc select * from imgs where imgid=1651768337;
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | imgs | const | PRIMARY | PRIMARY | 8 | const | 1 | |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+
1 row in set (0.00 sec)
注意key、rows和Extra這三項(xiàng),這條語句返回的結(jié)果說明了該sql會使用PRIMARY主鍵索引來查詢,結(jié)果集數(shù)量為1條,Extra沒有顯示,證明沒有用到排序或其他操作。由此結(jié)果可以推斷,mysql會從索引中查詢imgid=1651768337這條記錄,然后再到真實(shí)表中取出所有字段,是很簡單的操作。
key是指明當(dāng)前sql會使用的索引,mysql執(zhí)行一條簡單語句時只能使用到一條索引,注意這個限制;rows是返回的結(jié)果集大小,結(jié)果集就是使用該索引進(jìn)行一次搜索的所有匹配結(jié)果;Extra一般會顯示查詢和排序的方式,。
如果沒有使用到key,或者rows很大而用到了filesort排序,一般都會影響到效率,例如:
mysql> desc select * from imgs where userid="7mini" order by clicks desc limit 10;
+----+-------------+-------+------+---------------+------+----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
| 1 | SIMPLE | imgs | ALL | NULL | NULL | NULL | NULL | 12506 |
Using where; Using filesort |
+----+-------------+-------+------+---------------+------+---------+------+------
1 row in set (0.00 sec)
這條sql結(jié)果集會有12506條,用到了filesort,所以執(zhí)行起來會非常消耗效率的。這時mysql執(zhí)行時會把整個表掃描一遍,一條一條去找到匹配userid="7mini"的記錄,然后還要對這些記錄的clicks進(jìn)行一次排序,效率可想而知。真實(shí)執(zhí)行時如果發(fā)現(xiàn)還比較快的話,那是因?yàn)榉?wù)器內(nèi)存還足夠?qū)?2506條比較短小的記錄全部讀入內(nèi)存,所以還比較快,但是并發(fā)多起來或者表大起來的話,效率問題就嚴(yán)重了。
這時我把userid加入索引:
create index userid on imgs (userid);
然后再檢查:
mysql> desc select * from imgs where userid="7mini" order by clicks desc limit 10;
+----+-------------+-------+------+---------------+--------+----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+--------+---------+-------+
| 1 | SIMPLE | imgs | ref | userid | userid | 51 | const | 8 | Using where;
Using filesort |
+----+-------------+-------+------+--------------+------+-------+
1 row in set (0.00 sec)
嗯,這時可以看到mysql使用了userid這個索引搜索了,用userid索引一次搜索后,結(jié)果集有8條。然后雖然使用了filesort一條一條排序,但是因?yàn)榻Y(jié)果集只有區(qū)區(qū)8條,效率問題得以緩解。
但是,如果我用別的userid查詢,結(jié)果又會有所不同:
mysql> desc select * from imgs where userid="admin" order by clicks
desc limit 10;
+----+-------------+-------+------+---------------+--------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
Extra |
+----+-------------+-------+------+---------------+--------+--------------+
| 1 | SIMPLE | imgs | ref | userid | userid | 51 | const | 2944 | Using where;
Using filesort |
+----+-------------+-------+------+---------------+--------++------------+
1 row in set (0.00 sec)
這個結(jié)果和userid="7mini"的結(jié)果基本相同,但是mysql用userid索引一次搜索后結(jié)果集的大小達(dá)到2944條,這2944條記錄都會加入內(nèi)存進(jìn)行filesort,效率比起7mini那次來說就差很多了。這時可以有兩種辦法可以解決,第一種辦法是再加一個索引和判斷條件,因?yàn)槲抑恍枰鶕?jù)點(diǎn)擊量取最大的10條數(shù)據(jù),所以有很多數(shù)據(jù)我根本不需要加進(jìn)來排序,比如點(diǎn)擊量小于10的,這些數(shù)據(jù)可能占了很大部分。
我對clicks加一個索引,然后加入一個where條件再查詢:
create index clicks on imgs(clicks);
mysql> desc select * from imgs where userid="admin" order by clicks desc limit 10;
+----+-------------+-------+------+---------------+----+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+-+------+-----------------------------+
| 1 | SIMPLE | imgs | ref | userid,clicks | userid | 51 | const | 2944 | Using where;
Using filesort |
+----+-------------+-------+------+---------------+------+-----------------------------+
1 row in set (0.00 sec)
這時可以看到possible_keys變成了userid,clicks,possible_keys是可以匹配的所有索引,mysql會從possible_keys中自己判斷并取用其中一個索引來執(zhí)行語句,值得注意的是,mysql取用的這個索引未必是最優(yōu)化的。這次查詢mysql還是使用userid這個索引來查詢的,并沒有按照我的意愿,所以結(jié)果還是沒有什么變化。改一下sql加上use index強(qiáng)制mysql使用clicks索引:
mysql> desc select * from imgs use index (clicks) where userid=’admin’ and clicks>10 order by clicks desc limit 10
+----+-------------+-------+-------+-----------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+-------+------+-------------+
| 1 | SIMPLE | imgs | range | clicks | clicks | 4 | NULL | 5455 | Using where |
+----+-------------+-------+------------+------+------+-------------+
1 row in set (0.00 sec)
這時mysql用到了clicks索引進(jìn)行查詢,但是結(jié)果集比userid還要大!看來還要再進(jìn)行限制:
mysql> desc select * from imgs use index (clicks) where userid=’admin’ and clicks>1000 order by clicks desc limit 10
+----+-------------+-------+---
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
| 1 | SIMPLE | imgs | range | clicks | clicks | 4 | NULL | 312 | Using where |
--+---------+------+------+-------------+
1 row in set (0.00 sec)
加到1000的時候結(jié)果集變成了312條,排序效率應(yīng)該是可以接受。
不過,采用換索引這種優(yōu)化方式需要取一個采樣點(diǎn),比如這個例子中的1000這個數(shù)字,這樣,對userid的每個數(shù)值,都要去找一個采樣點(diǎn),這樣對程序來說是很難辦的。如果按1000取樣的話,那么userid=’7mini’這個例子中,取到的結(jié)果將不會是8條,而是2條,給用戶造成了困惑。
當(dāng)然還有另一種辦法,加入雙索引:
create index userid_clicks on imgs (userid, clicks)
mysql> desc select * from imgs where userid="admin" order by clicks desc limit 10;
-------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len
| ref | rows | Extra |
+----+-------------+-------+---------------+---------+-------+------+-------------+
| 1 | SIMPLE | imgs | ref | userid,userid_clicks | userid_clicks | 51 | const | 2944
| Using where |
+----+-------------+-------+------+-------------+---------+-------+------+-------------+
1 row in set (0.00 sec)
這時可以看到,結(jié)果集還是2944條,但是Extra中的filesort不見了。這時mysql使用userid_clicks這個索引去查詢,這不但能快速查詢到userid="admin"的所有記錄,并且結(jié)果是根據(jù)clicks排好序的!所以不用再把這個結(jié)果集讀入內(nèi)存一條一條排序了,效率上會高很多。
但是用多字段索引這種方式有個問題,如果查詢的sql種類很多的話,就得好好規(guī)劃一下了,否則索引會建得非常多,不但會影響到數(shù)據(jù)insert和update的效率,而且數(shù)據(jù)表也容易損壞。
以上是對索引優(yōu)化的辦法,因?yàn)樵蚩赡軙容^復(fù)雜,所以寫得比較的長,一般好好優(yōu)化了索引之后,mysql的效率會提升n個檔次,從而也不需要考慮增加機(jī)器來解決問題了。
但是,mysql甚至所有數(shù)據(jù)庫,可能都不好解決limit的問題。在mysql中,limit 0,10只要索引合適,是沒有問題的,但是limit 100000,10就會很慢了,因?yàn)閙ysql會掃描排好序的結(jié)果,然后找到100000這個點(diǎn),取出10條返回。要找到100000這個點(diǎn),就要掃描100000條記錄,這個循環(huán)是比較耗時的。不知道會不會有什么好的算法可以優(yōu)化這個掃描引擎,我冥思苦想也想不出有什么好辦法。對于limit,目前直至比較久遠(yuǎn)的將來,我想只能通過業(yè)務(wù)、程序和數(shù)據(jù)表的規(guī)劃來優(yōu)化,我想到的這些優(yōu)化辦法也都還沒有一個是萬全之策,往后再討論。
2、sql寫法過于復(fù)雜
sql寫法假如用到一些特殊的功能,比如groupby、或者多表聯(lián)合查詢的話,mysql用到什么方式來查詢也可以用desc來分析,我這邊用復(fù)雜sql的情況還不算多,所以不常分析,暫時就沒有好的建議。
3、配置錯誤
配置里主要參數(shù)是key_buffer、sort_buffer_size/myisam_sort_buffer_size,這兩個參數(shù)意思是:
key_buffer=128M:全部表的索引都會盡可能放在這塊內(nèi)存區(qū)域內(nèi),索引比較大的話就開稍大點(diǎn)都可以,我一般設(shè)為128M,有個好的建議是把很少用到并且比較大的表想辦法移到別的地方去,這樣可以顯著減少mysql的內(nèi)存占用。
sort_buffer_size=1M:單個線程使用的用于排序的內(nèi)存,查詢結(jié)果集都會放進(jìn)這內(nèi)存里,如果比較小,mysql會多放幾次,所以稍微開大一點(diǎn)就可以了,重要是優(yōu)化好索引和查詢語句,讓他們不要生成太大的結(jié)果集。
另外一些配置:
thread_concurrency=8:這個配置標(biāo)配=cpu數(shù)量x2
interactive_timeout=30
wait_timeout=30:這兩個配置使用10-30秒就可以了,這樣會盡快地釋放內(nèi)存資源,注意:一直在使用的連接是不會斷掉的,這個配置只是斷掉了長時間不動的連接。
query_cache:這個功能不要使用,現(xiàn)在很多人看到cache這幾個字母就像看到了寶貝,這是不唯物主義的。mysql的query_cache在每次表數(shù)據(jù)有變化的時候都會重新清理連至該表的所有緩存,如果更新比較頻繁,query_cache不但幫不上忙,而且還會對效率影響很大。這個參數(shù)只適合只讀型的數(shù)據(jù)庫,如果非要用,也只能用query_cache_type=2自行用SQL_CACHE指定一些sql進(jìn)行緩存。
max_connections:默認(rèn)為100,一般情況下是足夠用的,但是一般要開大一點(diǎn),開到400-600就可以了,能超過600的話一般就有效率問題,得另找對策,光靠增加這個數(shù)字不是辦法。
其它配置可以按默認(rèn)就可以了,個人覺得問題還不是那么的大,提醒一下:1、配置雖然很重要,但是在絕大部分情況下都不是效率問題的罪魁禍?zhǔn)住?、mysql是一個數(shù)據(jù)庫,對于數(shù)據(jù)庫最重要考究的不應(yīng)是效率,而是穩(wěn)定性和數(shù)據(jù)準(zhǔn)確性。 4、機(jī)器實(shí)在負(fù)荷不了
如果做了以上調(diào)整,服務(wù)器還是不能承受,那就只能通過架構(gòu)級調(diào)整來優(yōu)化了。
1、mysql同步。
通過mysql同步功能將數(shù)據(jù)同步到數(shù)臺從數(shù)據(jù)庫,由主數(shù)據(jù)庫寫入,從數(shù)據(jù)庫提供讀取。
我個人不是那么樂意使用mysql同步,因?yàn)檫@個辦法會增加程序的復(fù)雜性,并常常會引起數(shù)據(jù)方面的錯誤。在高負(fù)荷的服務(wù)中,死機(jī)了還可以快速重啟,但數(shù)據(jù)錯誤的話要恢復(fù)就比較麻煩。
2、加入緩存
加入緩存之后,就可以解決并發(fā)的問題,效果很明顯。如果是實(shí)時系統(tǒng),可以考慮用刷新緩存方式使緩存保持最新。
在前端加入squid的架構(gòu)比較提倡使用,在命中率比較高的應(yīng)用中,基本上可以解決問題。
如果是在程序邏輯層里面進(jìn)行緩存,會增加很多復(fù)雜性,問題會比較多而且難解決,不建議在這一層面進(jìn)行調(diào)整。
3、程序架構(gòu)調(diào)整,支持同時連接多個數(shù)據(jù)庫
如果web加入緩存后問題還是比較嚴(yán)重,只能通過程序架構(gòu)調(diào)整,把應(yīng)用拆散,用多臺的機(jī)器同時提供服務(wù)。
如果拆散的話,對業(yè)務(wù)是有少許影響,如果業(yè)務(wù)當(dāng)中有部分功能必須使用所有的數(shù)據(jù),可以用一個完整庫+n個分散庫這樣的架構(gòu),每次修改都在完整庫和分散庫各操作一次,或定期整理完整庫。
當(dāng)然,還有一種最笨的,把數(shù)據(jù)庫整個完完整整的做拷貝,然后程序每次都把完整的sql在這些庫執(zhí)行一遍,訪問時輪詢訪問,我認(rèn)為這樣要比mysql同步的方式安全。
4、使用 mysql proxy 代理
mysql proxy 可以通過代理把數(shù)據(jù)庫中的各個表分散到數(shù)臺服務(wù)器,但是它的問題是沒有能解決熱門表的問題,如果熱門內(nèi)容散在多個表中,用這個辦法是比較輕松就能解決問題。
我沒有用過這個軟件也沒有認(rèn)真查過,不過我對它的功能有一點(diǎn)點(diǎn)懷疑,就是它怎么實(shí)現(xiàn)多個表之間的聯(lián)合查詢?如果能實(shí)現(xiàn),那么效率如何呢?
5、使用memcachedb
數(shù)據(jù)庫換用支持mysql的memcachedb,是可以一試的想法,從memcachedb的實(shí)現(xiàn)方式和層面來看對數(shù)據(jù)沒有什么影響,不會對用戶有什么困擾。
為我現(xiàn)在因?yàn)閿?shù)據(jù)庫方面問題不多,沒有試驗(yàn)過這個玩意。不過,只要它支持mysql的大部分主要的語法,而且本身穩(wěn)定,可用性是無需置疑的。
版權(quán)所有:啟邁科技-合肥網(wǎng)站建設(shè) 皖I(lǐng)CP備19009304號-1 皖公網(wǎng)安備 34010402702162號
網(wǎng)站建設(shè),網(wǎng)站設(shè)計(jì)公司啟邁科技,為眾多企業(yè)提供網(wǎng)站建設(shè),網(wǎng)站制作,響應(yīng)式網(wǎng)站設(shè)計(jì),手機(jī)網(wǎng)站建設(shè),微網(wǎng)站,模板建站,企業(yè)郵箱等一站式互聯(lián)網(wǎng)解決方案和建站服務(wù)10年。